Exhaust Oxygen Sensors

Toyota engines utilize two different types of oxygen sensors. The zirconium dioxide sensor is used on all engines except the '90 and later 4A-GE Federal and 3VZ-E California 2WD truck engines. These two engines use a titania oxide sensor.

To bring the system to closed loop operation more rapidly, many engines use a heated exhaust oxygen sensor. The heated sensor provides more accurate exhaust sampling during idle and low speed operation when exhaust temperatures are relatively low. Use of a heated sensor allows closed loop operation earlier during engine warm-up cycles and also allows more flexibility in oxygen sensor location. These factors help in meeting strict exhaust emissions control standards.

Engines produced for sale in California also incorporate a Sub-Oxygen Sensor which helps improve the efficiency of the catalyst system. This sensor is located after the catalyst and is used to fine tune the air/fuel ratio delivered by the injectors, helping to optimize catalyst efficiency.

Zirconium Dioxide Sensor The zirconium dioxide oxygen sensor is an electro-chemical device which compares the oxygen content of the exhaust stream with the oxygen in an ambient air sample. It consists of a zirconium dioxide (Zr02) element sandwiched between two platinum electrodes.

This sensor behaves very similar to a single cell battery. The electrodes act as the positive (+) and negative (-) plates, and the zirconium dioxide element acts as the electrolyte.

Rich air/fuel ratio: If the oxygen concentration on the inside plate differs greatly from that on the outside plate, as it would with a rich air/fuel ratio, electrons will flow through the Zr02 element to the plate exposed to the high oxygen concentration. During rich operating conditions, the inside, or positive plate, is exposed to a much higher concentration of oxygen than the outside, or negative plate. This creates a difference in electrical potential, or voltage, which is measured by a comparator circuit in the E CU.

Lean air/fuel ratio: When the air/fuel ratio becomes lean, the oxygen content of the exhaust gas increases significantly. Because both plates are now exposed to a relatively high concentration of oxygen, electrons balance equally between the two plates. This eliminates the electrical potential between the plates.

Do It Yourself Car Diagnosis

Do It Yourself Car Diagnosis

Don't pay hundreds of dollars to find out what is wrong with your car. This book is dedicated to helping the do it yourself home and independent technician understand and use OBD-II technology to diagnose and repair their own vehicles.

Get My Free Ebook


Post a comment